Solution Electrical Numerical 6
Numerical 6: A total
load of 8000 kW at 0.8 power factor is supplied by two alternators in
parallel. One alternator supplies 6000 kW at 0.9 power factor. Find the
KVA rating of the other alternator and the power factor.
Solution: In such questions, it is to be noted that KW is active component of KVA, while KVAr is reactive component.
The
active components of all machines connected to a source can be added to
know the total active load, and so the reactive load. But KVA can't be
added or subtracted directly.
Alternator No.1:
$\displaystyle \mathrm{KW_1\ =\ 6000}$
$\displaystyle \mathrm{Cos\phi_1 \ =\ 0.9}$
$\displaystyle \mathrm{KVA_1\times Cos\phi_1 = KW_1}$
$\displaystyle \mathrm{KVA_1\times 0.9 = 6000}$
$\displaystyle \mathrm{KVA_1\ =\ 6666.667}$
$\displaystyle \mathrm{Cos\phi_1 = 0.9\ \Rightarrow\ Sin\phi_1 = 0.436\ }$
and, $\displaystyle \mathrm{KVA_1\times Sin\phi_1 = KVAr_1}$
$\displaystyle \mathrm{6666.667\times 0.436 = KVAr_1}$
thus, $\displaystyle \mathrm{KVAr_1 = 2906.67}$
Total:
$\displaystyle \mathrm{KW\ =\ 8000}$
$\displaystyle \mathrm{Cos\phi \ =\ 0.8}$
$\displaystyle \mathrm{KVA\times Cos\phi = KW}$
$\displaystyle \mathrm{KVA\times 0.8 = 8000}$
$\displaystyle \mathrm{KVA\ =\ 10,000}$
$\displaystyle \mathrm{Cos\phi = 0.8\ \Rightarrow\ Sin\phi = 0.6\ }$
and, $\displaystyle \mathrm{KVA\times Sin\phi = KVAr}$
$\displaystyle \mathrm{10,000\times 0.6 = KVAr}$
thus, $\displaystyle \mathrm{KVAr = 6000}$
Alternator No.2:
$\displaystyle \mathrm{KW_2\ =\ KW-KW_1\ =\ 8000-6000\ =\ 2000}$
$\displaystyle \mathrm{KVAr_2\ =\ KVAr-KVAr_1\ =\ 6000-2906.667\ =\ 3093.333}$
$\displaystyle \mathrm{KVA_2\ =\ \sqrt{KW_2^2 + KVAr_2^2 }}$
$\displaystyle \mathrm{KVA_2\ =\ \sqrt{2000^2 + 3093.333^2 }=\ 3683.573}$
and, $\displaystyle \mathrm{Cos\phi _2 =\ \frac{KW_2}{KVA_2}}$
$\displaystyle \mathrm{Cos\phi _2 =\ \frac{2000}{3683.573}= 0.543}$
Thus KVA rating of other alternator = 3683.573 KVA
and Power factor = 0.543
Comments
Post a Comment