Numerical
27: A
ship 100 m long floats at a draught of 6 m and in this condition the
immersed cross-sectional areas and water plane areas are as given below.The equivalent base area (Ab) is required because of the fineness of the bottom shell.
Section | AP | 1 | 2 | 3 | 4 | 5 | FP |
Immersed Cross Section area (m^2) | 12 | 30 | 65 | 80 | 70 | 50 | 0 |
Draught (m) | 0 | 0.6 | 1.2 | 2.4 | 3.6 | 4.8 | 6.0 |
Waterplane area (m^2) | A_b | 560 | 720 | 880 | 940 | 1000 | 1030 |
Calculate EACH of the following:
(a) The equivalent base area value Ab.
(b) The longitudinal position of the center of buoyancy from midships.
(c) The vertical position of the centre of buoyancy above the base.
Solution:
Section | Immersed CSA | SM | Product for volume | Lever | product for moment |
AP | 12 | 1 | 12 | -3 | -36 |
1 | 30 | 4 | 120 | -2 | -240 |
2 | 65 | 2 | 130 | -1 | -130 |
3 | 80 | 4 | 320 | 0 | 0 |
4 | 70 | 2 | 140 | 1 | 140 |
5 | 50 | 4 | 200 | 2 | 400 |
FP | 0 | 1 | 0 | 3 | 0 |
| | | ∑volume=922 | | ∑moment=134 |
h=m
(b) The longitudinal position of the centre of buoyancy from mid ship;
LCB= 2.421m (fwd)
Draught | Water plane area A_w | SM | Product for volume | Lever | product for moment |
0 | A_b | 1/2 | A_b/2 | 0 | 0 |
0.6 | 560 | 4/2 | 1120 | 0.6 | 672 |
1.2 | 720 | 1/2 | 1080 | 1.2 | 1296 |
2.4 | 880 | 4 | 3520 | 2.4 | 8448 |
3.6 | 940 | 2 | 1880 | 3.6 | 6768 |
4.8 | 1000 | 4 | 4000 | 4.8 | 19200 |
6.0 | 1030 | 1 | 1030 | 6.0 | 6180 |
| | | ∑volume=A_b/2+12630 | | ∑moment=42564 |
(a) Equivalent base area value
=340.85 m-sq
(c) The vertical position of center of buoyancy
KB= 3.325m
Comments
Post a Comment