Solution Naval Numerical 27

Numerical 27: A ship 100 m long floats at a draught of 6 m and in this condition the immersed cross-sectional areas and water plane areas are as given below.The equivalent base area (Ab) is required because of the fineness of the bottom shell.

 

Section

AP

1

2

3

4

5

FP

Immersed Cross Section area (m^2)

12

30

65

80

70

50

0

 

Draught (m)

0

0.6

1.2

2.4

3.6

4.8

6.0

Waterplane area (m^2)

A_b

560

720

880

940

1000

1030

Calculate EACH of the following: 

(a) The equivalent base area value Ab.
(b) The longitudinal position of the center of buoyancy from midships. 
(c) The vertical position of the centre of buoyancy above the base.
Solution:

 

Section

Immersed CSA

SM

Product for volume

Lever

product for moment

AP

12

1

12

-3

-36

1

30

4

120

-2

-240

2

65

2

130

-1

-130

3

80

4

320

0

0

4

70

2

140

1

140

5

50

4

200

2

400

FP

0

1

0

3

0

 

 

 

volume=922

 

moment=134


h=m

 
 

(b) The longitudinal position of the centre of buoyancy from mid ship;  
 
LCB= 2.421m (fwd)

 

Draught

Water plane area A_w

SM

Product for volume

Lever

product for moment

0

A_b

1/2

A_b/2

0

0

0.6

560

4/2

1120

0.6

672

1.2

720

1/2

1080

1.2

1296

2.4

880

4

3520

2.4

8448

3.6

940

2

1880

3.6

6768

4.8

1000

4

4000

4.8

19200

6.0

1030

1

1030

6.0

6180

 

 

 

∑volume=A_b/2+12630

 

∑moment=42564

 


(a) Equivalent base area value

 
=340.85 m-sq

(c) The vertical position of center of buoyancy
 
KB= 3.325m

Comments