Answer MET Question 12
Question: A. With the aid of delta and star connection diagrams, state the 
basic equation from which delta – star – delta conversion equation can 
be derived. 
Answer: Delta and star connection diagrams
Derivation: 
In Delta connection
$\displaystyle \small \mathrm{\frac{1}{R_{AB}}=\frac{1}{R_1}+\frac{1}{R_2+R_3}}$ 
In star connection 
$\displaystyle \small \mathrm{R_{AB}=R_a + R_b}$ 
thus,
$\displaystyle \small \mathrm{R_a + R_b = \frac{R_1(R_2+R_3)}{R_1+R_2 + R_3}}$ 
similarly,
$\displaystyle \small \mathrm{R_b + R_c = \frac{R_2(R_3+R_1)}{R_1+R_2 + R_3}}$  
$\displaystyle \small \mathrm{R_c + R_a = \frac{R_3(R_2+R_1)}{R_1+R_2 + R_3}}$ Adding the above three equations we get;
$\displaystyle \small \mathrm{R_a + R_b +R_c = \frac{R_1R_2+R_2R_3+R_3R_1}{R_1+R_2 + R_3}}$ 
Now;
$\displaystyle
 \small \mathrm{(R_a + R_b +R_c)-(R_b+R_c) = 
\frac{R_1R_2+R_2R_3+R_3R_1}{R_1+R_2 + R_3}-\frac{R_2(R_3+R_1)}{R_1+R_2 +
 R_3}}$ 
thus;
$\displaystyle \small \mathrm{R_a = \frac{R_3R_1}{R_1+R_2 + R_3}}$ 
Similarly ;
$\displaystyle \small \mathrm{R_b = \frac{R_1R_2}{R_1+R_2 + R_3}}$ 
$\displaystyle \small \mathrm{R_c = \frac{R_2R_3}{R_1+R_2 + R_3}}$
The above set of equations can be used for Delta-Star Transformation
Now;
$\displaystyle \small \mathrm{R_aR_b = \frac{R_1^2R_2R_3}{(R_1+R_2 + R_3)^2}}$ 
$\displaystyle \small \mathrm{R_bR_c = \frac{R_1R_2^2R_3}{(R_1+R_2 + R_3)^2}}$ 
$\displaystyle \small \mathrm{R_cR_a = \frac{R_1R_2R_3^2}{(R_1+R_2 + R_3)^2}}$ 
adding above three equations; 
$\displaystyle \small \mathrm{R_aR_b+R_bR_c+R_cR_a = \frac{R_1R_2R_3}{R_1+R_2 + R_3}}$ 
dividing the above by 
$\displaystyle \small \mathrm{R_c = \frac{R_2R_3}{R_1+R_2 + R_3}}$
We get;$\displaystyle \small \mathrm{R_c = \frac{R_2R_3}{R_1+R_2 + R_3}}$
$\displaystyle \small \mathrm{R_1 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_c}}$ 
similarly
$\displaystyle \small \mathrm{R_2 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_a}}$
$\displaystyle \small \mathrm{R_3 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_b}}$ 
The above equations can be used for the transformation from Star to Delta

Comments
Post a Comment