Answer MET Question 12

Question: A. With the aid of delta and star connection diagrams, state the basic equation from which delta – star – delta conversion equation can be derived.
Answer: Delta and star connection diagrams

Derivation:
In Delta connection
\displaystyle \small \mathrm{\frac{1}{R_{AB}}=\frac{1}{R_1}+\frac{1}{R_2+R_3}}

In star connection
\displaystyle \small \mathrm{R_{AB}=R_a + R_b}

thus,
\displaystyle \small \mathrm{R_a + R_b = \frac{R_1(R_2+R_3)}{R_1+R_2 + R_3}}
similarly,
\displaystyle \small \mathrm{R_b + R_c = \frac{R_2(R_3+R_1)}{R_1+R_2 + R_3}} 
\displaystyle \small \mathrm{R_c + R_a = \frac{R_3(R_2+R_1)}{R_1+R_2 + R_3}}
Adding the above three equations we get;
\displaystyle \small \mathrm{R_a + R_b +R_c = \frac{R_1R_2+R_2R_3+R_3R_1}{R_1+R_2 + R_3}}

Now;
\displaystyle \small \mathrm{(R_a + R_b +R_c)-(R_b+R_c) = \frac{R_1R_2+R_2R_3+R_3R_1}{R_1+R_2 + R_3}-\frac{R_2(R_3+R_1)}{R_1+R_2 + R_3}}
thus;
\displaystyle \small \mathrm{R_a = \frac{R_3R_1}{R_1+R_2 + R_3}}
Similarly ;
\displaystyle \small \mathrm{R_b = \frac{R_1R_2}{R_1+R_2 + R_3}}
\displaystyle \small \mathrm{R_c = \frac{R_2R_3}{R_1+R_2 + R_3}}
The above set of equations can be used for Delta-Star Transformation

Now;
\displaystyle \small \mathrm{R_aR_b = \frac{R_1^2R_2R_3}{(R_1+R_2 + R_3)^2}}
\displaystyle \small \mathrm{R_bR_c = \frac{R_1R_2^2R_3}{(R_1+R_2 + R_3)^2}}
\displaystyle \small \mathrm{R_cR_a = \frac{R_1R_2R_3^2}{(R_1+R_2 + R_3)^2}}

adding above three equations;
\displaystyle \small \mathrm{R_aR_b+R_bR_c+R_cR_a = \frac{R_1R_2R_3}{R_1+R_2 + R_3}}

dividing the above by
\displaystyle \small \mathrm{R_c = \frac{R_2R_3}{R_1+R_2 + R_3}}
We get;
\displaystyle \small \mathrm{R_1 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_c}}

similarly
\displaystyle \small \mathrm{R_2 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_a}}
\displaystyle \small \mathrm{R_3 = \frac{R_aR_b+R_bR_c+R_cR_a}{R_b}}
The above equations can be used for the transformation from Star to Delta

Comments